Estimativas de crescimento de bivalves tropicais e subtropicais: recomendação para um método padronizado

Autores

  • Rafael Anaisce das Chagas Universidade Federal Rural da Amazônia (UFRA), Programa de Pós-Graduação em Aquicultura e Recursos Aquáticos Tropicais (PPGAqRAT/UFRA)
  • Marko Herrmann Universidade Federal Rural da Amazônia (UFRA) http://orcid.org/0000-0001-9891-6700

DOI:

https://doi.org/10.2312/Actafish.2016.4.2.28-38

Palavras-chave:

Experimentos de marcação-recaptura, marcação fluorescente in situ de tempo curto, fluorocromo calceína, taxa de crescimento diária, ostreicultura / tagging-recapture, in situ fluorescent marking, fluorochrome calcein, growth rate, ostreiculture

Resumo

Resumo A sequência de uma coorte especial através da análise de distribuições de frequências de comprimento (LFD), proveniente de uma temporalmente extensa amostragem quantitativa, é uma técnica comum entre ecologistas para estimar o crescimento populacional de uma única espécie. Neste método, uma dada classe anual é seguida e a alteração na dimensão média do modo é equivalente a um crescimento médio. No entanto, a análise LFD só funciona bem em espécies de bivalves com um período de reprodução ou recrutamento muito estreito, o que é normalmente o caso de bivalves de regiões temperadas e polares. Pelo contrário, uma vez que em bivalves tropicais o período de recrutamento normalmente é prolongado ou taxas de crescimento são variáveis, a análise LFD tem aplicação limitada e não pode ser útil para estimação de crescimento em espécies tropicais e subtropicais. Por consequência, o presente estudo resume as informações disponíveis sobre as estimativas de crescimento dos bivalves tropicais e subtropicais e recomenda, principalmente para pesquisadores que não dominam o idioma inglês, experimentos de marcação-recaptura em tempo curtos, usando o método de marcação fluorescente in situ (IFM), para medir o crescimento absoluto como um método padrão apropriado para futuros estudos de bivalves de importância econômica e ecológica, que habitam áreas climáticas tropicais e subtropicais.

Abstract - Following a particular cohort by analyzing length-frequency distributions (LFD), originating from a time consuming quantitative sampling, is a common technique among ecologists to estimate the population growth of a single species. In this method, a given year class is followed, and the change in the average size of the mode is equivalent to average growth. Nevertheless, LFD analysis only works well in bivalve species with a very narrow reproductive or recruitment period, which is normally the case of temperate and polar bivalves. On the contrary, since in tropical bivalves the recruitment period is usually extended or growth rates are variable, LFD analysis has limited application and may not be useful for tropical and subtropical species to estimate growth. On this account, the present study summarizes the available information on growth estimations of tropical and subtropical bivalves and recommends, mainly for researchers who do not dominate the English language, short time tagging-recapture experiments, using the in situ fluorescent marking (IFM) method, for measuring absolute growth as an appropriate standard method for future studies of economically and ecologically important bivalves, inhabiting tropical and subtropical climate areas.

Biografia do Autor

Rafael Anaisce das Chagas, Universidade Federal Rural da Amazônia (UFRA), Programa de Pós-Graduação em Aquicultura e Recursos Aquáticos Tropicais (PPGAqRAT/UFRA)

Engenheiro de Pesca pela Universidade Federal Rural da Amazônia (UFRA) e mestrando do Programa de Pós-graduação em Aquicultura e Recursos Aquáticos Tropicais (PPGAqRAT/UFRA)

Referências

Alagarswami, K. (1966). Studies on some aspects of biology of the wedge-clam Donax faba Gmelin from Mandapam coast in the Gulf of Mannar. Journal of the Marine Biological Association of the UK. 8: 56-75.

Ansell, A. D., & Lagardère, F. (1980). Observations on the biology of Donax trunculus and D. vittatus at Ile d'Oleron (French Atlantic Coast). Marine Biology. 574: 287-300.

Arntz, W. E., Brey, T., Tarazona, J., & Robles, A. (1987). Changes in the structure of a shallow sandy-beach community in Peru during an El Niño event. South African Journal of Marine Science. 5: 645-58.

Beal, B. F., Bayer, R., Kraus, G. M., & Chapman, S. R. (1999). A unique shell marker in juvenile, hatchery-reared individuals of the softshell clam, Mya arenaria L. Fishery Bulletin. 97: 380-86.

Bosley, K. M., & Dumbauld, B. R. (2011). Use of extractable lipofuscin to estimate age structure of ghost shrimp populations in west coast estuaries of the USA. Marine Ecology Progress Series. 428: 161-76.

Brey, T., & Mackensen, A. (1997). Stable isotopes prove shell growth bands in the Antarctic bivalve Laternula elliptica to be formed annually. Polar Biology. 17: 465-68.

Caceres-Puig, J. I., Huato-Soberanis, L., Melo-Barrera, F. N., & Saucedo, P. E. (2011). Use of calcein to estimate and validate age in juveniles of the winged pearl oyster Pteria sterna. Aquatic Living Resources. 243: 329-35.

Capezzani, D. A. A., Oliver, S. R., & Penchaszadeh, P. E. (1971). Capitulo III: Dinámica de población. In: S. R. Olivier, D. Capezzani, J. Carreto, H. Christiansen, V. Moreno, J. A. de Moreno, & P. E. Penchaszadeh (Ed.). Estructura de la Comunidad, Dinámica de la Población y Biología de la Almeja Amarilla (Mesodesma mactroides) en Mar Azul (pp. 49-64).

Carré, M., Bentaleb, I., Blamart, D., Ogle, N., Cardenas, F., Zevallos, S., Kalin, M. R., Ortlieb, L., & Fontigne, M. (2005). Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: Potential application to Peruvian paleoceanographic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology. 228: 4-25.

Chagas, R. A. (2016). Biofouling no cultivo da ostra-do-mangue Crassostrea rhizophorae (Guilding, 1828) (Bivalvia: Ostreidae) em um estuário amazônico [Monografia de Graduação]. Belém (PA): Universidade Federal Rural da Amazônia.

CNA (2015). Aquicultura: atividade em ascensão. Boletim Ativos Aquicultura. 1 ed., junho. 1(1): 1-4

Day, R. W., Williams, M. C., & Hawkes, G. P. (1995). A comparison of fluorochromes for marking abalone shells. Marine and Freshwater Research. 46: 599-605.

Eads, C. B., & Layzer, J. B. (2002). How to pick your mussels out of a crowd: Using fluorescence to mark juvenile freshwater mussels. Journal of the North American Benthological Society. 213: 476-86.

FAO. (2016). Fisheries and Aquaculture Information and Statistics Branch. Acessado em: www.fao.org/.

Fiori, S. M., & Morsán, E. M. (2004). Age and individual growth of Mesodesma mactroides (Bivalvia) in the southernmost range of its distribution. Journal of Marine Science. 61: 1253-59.

Gaspar, M. B., Ferreira, R., & Monteiro, C. C. (1999). Growth and reproductive cycle of Donax trunculus L., (Mollusca: Bivalvia) off Faro, southern Portugal. Fisheries Research. 41: 309-16.

Gayanilo, F. C., Sparre, P., & Pauly, D. (2005). FAO-ICLARM Stock Assessment Tools II (FiSAT II). User's guide. FAO Computerized Information Series (Fisheries). No. 8, Revised version. Rome: FAO.

Gomes, R. S., Araújo, R. C. P., & Neto, M. P. D. (2008). Contribuição da ostreicultura para formação da renda familiar: Estudo de caso do projeto de ostreicultura comunitário da Fundação Alphaville, Eusébio - Ceará. XLVI Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural. 21.

Gosling, E. (2015). Marine Bivalve Molluscs. Pondicherry, India: John Wiley & Sons, Ltda.

Guedes, S. (2014). Ostreicultura gera renda para famílias paraenses. Sebrae/PA. Acessado em: 28 de novembro de 2015 Disponível em: http://www.pa.agenciasebrae.com.br/sites/asn/uf/PA/Ostreicultura-gera-renda-para-fam%C3%ADlias-do-nordeste-paraense.

Guerra, C., Zenteno-Savin, T., Maeda-Martinez, A. N., Philipp, E. E., & Abele, D. (2012). Changes in oxidative stress parameters in relation to age, growth and reproduction in the short-lived catarina scallop Argopecten ventricosus reared in its natural environment. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology. 1624: 421-30.

Guillou, J., & Le Moal, Y. (1980). Aspects de la dynamique des populations de Donax trunculus et Donax vittatus en baie de Douarnenez. Annales de l'Institut Océanographique (Paris). 561: 55-64.

Hart, A. M., & Joll, L. M. (2006). Growth, mortality, recruitment and sex-ratio in wild stocks of silver-lipped pearl oyster Pinctada maxima (Jameson) (Mollusca: Pteriidae), in Western Australia. Journal of Shellfish Research. 251: 201-10.

Heald, D. (1978). A successful marking method for the saucer scallop Amusium balloti (Bernardi). Australian Journal of Marine and Freshwater Research. 29: 845-51.

Heilmayer, O., Brey, T., Chiantore, M., Cattaneo-Vietti, R., & Arntz, W. E. (2003). Age and productivity of the Antarctic scallop, Adamussium colbecki, in Terra Nova Bay (Ross Sea, Antarctica). Journal of Experimental Marine Biology and Ecology. 288: 239-56.

Heilmayer, O., Honnen, C., Jacob, U., Chiantore, M., Cattaneo-Vietti, R., & Brey, T. (2005). Temperature effects on summer growth rates in the Antarctic scallop, Adamussium colbecki. Polar Biology. 28: 523-27.

Herrmann, M. (2009). Population dynamics of the surf clams Donax hanleyanus and Mesodesma mactroides from open-Atlantic beaches off Argentina. Reports on Polar and Marine Research. 585: 235.

Herrmann, M. (2011). Population dynamics of the Argentinean surf clams: Population dynamics of the surf clams Donax hanleyanus and Mesodesma mactroides from open-Atlantic beaches off Argentina. Saarbrücken, Germany: Südwestdeutscher Verlag für Hochschulschriften.

Herrmann, M., Alfaya, J. E. F., Lepore, M. L., Penchaszadeh, P. E., & Arntz, W. E. (2011). Population structure, growth and production of the yellow clam Mesodesma mactroides (Bivalvia: Mesodesmatidae) from a high-energy, temperate beach in northern Argentina. Helgoland Marine Research. 653: 285-97.

Herrmann, M., Alfaya, J. E. F., Lepore, M. L., Penchaszadeh, P. E., & Laudien, J. (2009). Reproductive cycle and gonad development of the Northern Argentinean Mesodesma mactroides (Bivalvia: Mesodesmatidae). Helgoland Marine Research. 633: 207-18.

Herrmann, M., Carstensen, D., Fischer, S., Laudien, J., Penchaszadeh, P. E., & Arntz, W. E. (2009). Population structure, growth and production of the wedge clam Donax hanleyanus (Bivalvia: Donacidae) from northern Argentinean beaches. Journal of Shellfish Research. 283: 511-26.

Herrmann, M., Lepore, M. L., Laudien, J., Arntz, W. E., & Penchaszadeh, P. E. (2009). Growth estimations of the Argentinean wedge clam Donax hanleyanus: A comparison between length-frequency distribution and size-increment analysis. Journal of Experimental Marine Biology and Ecology. 3791(2): 8-15.

Herrmann, M., Rocha Barreira de Almeida, C., Arntz, W. E., Laudien, J., & Penchaszadeh, P. E. (2009). Testing the habitat harshness hypothesis: Reproductive biology of the wedge clam Donax hanleyanus (Bivalvia: Donacidae) on three Argentinean sandy beaches with contrasting morphodynamics. Journal of Molluscan Studies. 761: 33–47.

Hidu, H., & Hanks, J. E. (1968). Vital staining of bivalve mollusk shells with alizarin sodium monosulfonate. Proceedings of the National Shellfisheries Association. 58: 37-41.

Hiebenthal, C., Philipp, E. E. R., Eisenhauer, A., & Wahl, M. (2012). Interactive effects of temperature and salinity on shell formation and general condition in Baltic Sea Mytilus edulis and Arctica islandica. Aquatic Biology. 143: 289-98.

Hilborn, R., & Walter, C. J. (2003). Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Springer US.

Hollebone, A. L., & Hay, M. E. (2008). An invasive crab alters interaction webs in a marine community. Biological Invasions [Biol. Invasions]. 103: 347-58.

Honkoop, P. J. C., & Bayne, B. L. (2002). Stocking density and growth of the Pacific oyster (Crassostrea gigas) and the Sydney rock oyster (Saccostrea glomerata) in Port Stephens, Australia. Aquaculture. 2131(4): 171-86.

Jennings, S., Kaiser, M. J., & Reynolds, J. D. (2001). Marine Fisheries Ecology. Hong Kong: Wiley-Blackwell.

Jones, D. S., Quitmyer, I. R., & Andrus, F. T. (2005). Oxygen isotopic evidence for greater seasonality in Holocene shells of Donax variabilis from Florida. Palaeogeography, Palaeoclimatology, Palaeoecology. 228: 96-108.

Jones, D. S., Thompson, I., & Ambrose, W. (1978). Age and growth rate determinations for the Atlantic surf clam Spisula solidissima (Bivalvia: Mactracea), based on internal growth lines in shell cross-sections. Marine Biology. 471: 63-70.

Jones, D. S., Williams, D. F., & Arthur, M. A. (1983). Growth history and ecology of the Atlantic surf clam, Spisula solidissima (Dillwyn), as revealed by stable isotopes and annual shell increments. Journal of Experimental Marine Biology and Ecology. 73: 225-42.

Kaehler, S., & McQuaid, C. D. (1999). Use of the fluorochrome calcein as an in situ growth marker in the brown mussel Perna perna. Marine Biology. 133: 455-60.

Kesler, D. H., Newton, T. J., & Green, L. (2007). Long-term monitoring of growth in the Eastern Elliptio, Elliptio complanata (Bivalvia: Unionidae), in Rhode Island: a transplant experiment. Journal of the North American Benthological Society. 261: 123-33.

Kimbro, D. L., Largier, J., & Grosholz, E. D. (2009). Coastal oceanographic processes influence the growth and size of a key estuarine species, the Olympia oyster. Limnology and Oceanography. 545: 1425-37.

King, M. (2007). Fisheries Biology, Assessment and Management. Singapore: Blackwell Science.

Laudien, J., Brey, T., & Arntz, W. E. (2003). Population structure, growth and production of the surf clam Donax serra (Bivalvia, Donacidae) on two Namibian sandy beaches. Estuarine, Coastal and Shelf Science. 58: 105-15.

Legat, J. F. A., Pereira, A. M. L., Legat, A. P., & Fogaça, F. H. d. S. (2008). Programa de Cultivo de Moluscos Bivalves da Embrapa Meio-Norte. Teresina - PI: Embrapa Meio-Norte.

Lepore, M. L., Penchaszadeh, P. E., Alfaya, J. E. F., & Herrmann, M. (2009). Aplicación de calceína para la estimación del crecimiento de la almeja amarilla Mesodesma mactroides Reeve, 1854. Revista de Biologia Marina y Oceanografia. 443: 767-74.

Linard, C., Gueguen, Y., Moriceau, J., Soyez, C., Hui, B., Raoux, A., Cuif, J. P., Cochard, J.-C., Le Pennec, M., & Le Moullac, G. (2011). Calcein staining of calcified structures in pearl oyster Pinctada margaritifera and the effect of food resource level on shell growth. Aquaculture. 3131(4): 149-55.

Lomovasky, B. J., Morriconi, E., Brey, T., & Calvo, J. (2002). Individual age and connective tissue lipofuscin in the hard clam Eurhomalea exalbida. Journal of Experimental Marine Biology and Ecology. 276: 83-94.

Lopes, G. R., Gomes, C. H. A. d. M., Tureck, C. R., & Melo, C. M. R. d. (2013). Growth of Crassostrea gasar cultured in marine and estuary environments in Brazilian waters. Pesquisa Agropecuária Brasileira. 487: 975-82.

Lucas, T., Palmer, P. J., Wang, S., Scoones, R., & O'Brien, E. (2008). Marking the shell of the saucer scallop Amusium balloti for sea ranching using oxytetracycline, calcein and alizarin red S. Journal of Shellfish Research. 275: 1183-88.

McLachlan, A., Dugan, J. E., Defeo, O., Ansell, A. D., Hubbard, D. M., Jaramillo, E., & Penchaszadeh, P. E. (1996). Beach clam fisheries. Oceanography and Marine Biology: an Annual Review. 34: 163-232.

McQuaid, C. D., & Lindsay, T. L. (2000). Effect of wave exposure on growth and mortality rates of the mussel Perna perna: Bottom-up regulation of intertidal populations. Marine Ecology Progress Series. 206: 147-54.

Mitchell, I. M., Crawford, C. M., & Rushton, M. J. (2000). Flat oyster (Ostrea angasi) growth and survival rates at Georges Bay, Tasmania (Australia). Aquaculture. 1914: 309-21.

Miyaji, T., Tanabe, K., & Schöne, B. R. (2007). Environmental controls on daily shell growth of Phacosoma japonicum (Bivalvia: Veneridae) from Japan. Marine Ecology Progress Series. 336: 141-50.

Moran, A. L. (2000). Calcein as a marker in experimental studies newly-hatched gastropods. Marine Biology. 137: 893-98.

Moran, A. L., & Marko, P. B. (2005). A simple technique for physical marking of larvae of marine bivalves. Journal of Shellfish Research. 242: 567-71.

Morsán, E. M., & Orensanz, J. M. L. (2004). Age structure and growth in an unusual population of purple clams, Amiantis purpuratus (Lamarck, 1818) (Bivalvia: Veneridae), from Argentine Patagonia. Journal of Shellfish Research. 231: 73-80.

Nayar, K. N. (1955). Studies on the growth of the wedge clam, Donax (Latona) cuneatus L. Indian Journal of Fisheries. 2: 325-48.

Parsons, G. J., Robinson, S. M. C., Roff, J. C., & Dadswell, M. J. (1993). Daily growth rates as indicated by valve ridges in postlarval giant scallop (Placopeten magellanicus) (Bivalvia: Pectinidae). Canadian Journal of Fisheries and Aquatic Sciences. 50: 456-64.

Ramon, M., Abello, P., & Richardson, C. A. (1995). Population structure and growth of Donax trunculus (Bivalvia: Donacidae) in the western Mediterranean. Marine Biology. 1214: 665-71.

Riascos, J. M., Guzman, N., Laudien, J., Heilmayer, O., & Oliva, M. (2007). Suitability of three stains to mark shells of Concholepas concholepas (Gastropopda) and Mesodesma donacium (Bivalvia). Journal of Shellfish Research. 261: 43-49.

Riascos, J. M., & Urban, H.J. (2002). Dinámica poblacional de Donax dentifer (Veneroida: Donacidae) en Bahía Málaga, Pacífico colombiano durante el fenómeno “El Niño” 1997/1998. Revista de biología tropical. 503(4): 1113-23.

Richardson, C. A. (1989). An analysis of microgrowth bands in the shell of the common mussel Mytilus edulis. Journal of the Marine Biological Association of the UK. 69: 477-91.

Richardson, C. A., Crisp, D. J., & Runham, N. W. (1979). Tidally deposited growth bands in the shell of the common cockle, Cerastoderma edule (L.). Malacologia. 18: 277-90.

Richardson, C. A., Seed, R., & Naylor, E. (1990). Use of internal growth bands for measuring individual and population growth rates in Mytilus edulis from offshore production platforms. Marine Ecology Progress Series. 663: 259-65.

Ropes, J. W., & Merrill, A. S. (1970). Marking surf clams. Proceedings of the National Shellfisheries Association. 60: 99-106.

Rowley, R. J., & Mackinnon, D. I. (1995). Use of the fluorescent marker calcein in biomineralisation studies of brachiopods and other marine organisms. Bulletin de l'Institut Océanographique (Monaco). Spec. Issue 14 part 2: 111-20.

Sasaki, K. (1981). Growth of the sakhalin surf clam, Spisula sachalinensis (Scherenck), in Sendai Bay. Tohoku Journal of Agricultural Research. 32: 168-80.

Sato-Okoshi, W., & Okoshi, K. (2002). Application of fluorescent substance to the analysis of growth performance in Antarctic bivalve, Laternula elliptica. Polar Bioscience. 15: 66-74.

Schöne, B., & Giere, O. (2005). Growth increments and stable isotope variation in shells of the deep-sea hydrothermal vent bivalve mollusk from the North Fiji Basin, Pacific Ocean. Deep-Sea Research I. 5210: 1896-910.

Seed, R. (1969). The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores. Oecologia. 3: 317-50.

Sparre, P., & Venema, S. C. (1998). Introduction to Tropical Fish Stock Assessment. Part 1. Manual. FAO Fisheries Technical Paper 306/1. Rev. 2: 407.

Talikhedkar, P. M., Mane, U. H., & Nagabhushanam, R. (1976). Growth rate of the wedge clam Donax cuneatus at Miriya Bay, Ratnagiri. Indian Journal of Fisheries. 23: 183-93.

Thébault, J., Chauvaud, L., Clavier, J., Fichez, R., & Morize, E. (2006). Evidence of a 2-day periodicity of striae formation in the tropical scallop Comptopallium radula using calcein marking. Marine Biology. 1492: 257-67.

Urban, H.-J. (2001). Reproductive strategies in tropical bivalves (Pteria colymbus, Pinctada imbricata and Pinna carnea): Temporal coumpling of gonad production and spat abundance related to enviromental variability. Journal of Shellfish Research. 20(3): 1127-1134.

van der Geest, M., van Gils, J. A., van der Meer, J., Olff, H., & Piersma, T. (2011). Suitability of calcein as an in situ growth marker in burrowing bivalves. Journal of Experimental Marine Biology and Ecology. 3991: 1-7.

von Bertalanffy, L. (1938). A quantitative theory of organic growth. Human Biology. 102: 181-213.

Wilson, C. A., Beckman, D. W., & Dean, J. M. (1987). Calcein as a fluorescent marker of otoliths of larval and juvenile fish. Transactions of the American Fisheries Society. 116: 668-70

Downloads

Publicado

2016-08-04

Edição

Seção

Artigo